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Abstract: Structural health monitoring (SHM) is the implementation of a damage 
detection strategy for aerospace, civil and mechanical engineering infrastructures. Typical 
damage experienced by these infrastructures might be the development of fatigue cracks, 
degradation of structural connections, or bearing wear in rotating machinery.  Engineers 
at Los Alamos National Laboratory (LANL) have been actively involved in SHM 
research for many years.  These activities have been supported by internal research funds, 
direct programmatic efforts, partnerships with industry, and external work for other non-
defense organizations.  This paper will summarize past and current SHM projects at 
LANL.  The primary result of this work is the development of LANL’s statistical pattern 
recognition paradigm for structural health monitoring.  This paradigm will be described in 
detail.  The paper concludes discussing the future directions for this technology that are 
currently being explored at LANL. 
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Introduction: The process of implementing a damage detection strategy for aerospace, 
civil and mechanical engineering infrastructures is referred to as structural health 
monitoring (SHM). Here damage is defined as changes to the material and/or geometric 
properties of these systems, including changes to the boundary conditions and system 
connectivity, which adversely affect the system’s performance.  The SHM process 
involves the observation of a system over time using periodically sampled dynamic 
response measurements from an array of sensors, the extraction of damage-sensitive 
features from these measurements, and the statistical analysis of these features to 
determine the current state of system health.  For long term SHM, the output of this 
process is periodically updated information regarding the ability of the structure to 
perform its intended function in light of the inevitable aging and degradation resulting 
from operational environments.  After extreme events, such as earthquakes or blast 
loading, SHM is used for rapid condition screening and aims to provide, in near real time, 
reliable information regarding the integrity of the structure.  
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This paper is intended to provide a summary of SHM technology developed at Los 
Alamos National Laboratory (LANL) over the last 15 years.  During this period LANL’s 
SHM technology has evolved from ad hoc procedures developed on a case-by-case basis 
to methods based on linear modal analysis and finally arriving at general statistical 
pattern recognition procedures that attempt to take advantage of the nonlinearities 
associated with many damaging events.  This learning process has culminated in the 
development of a statistical pattern recognition paradigm that can be used to describe all 
SHM problems.  A summary of this paradigm will be provided.  As the LANL staff’s 
viewpoint of the SHM problem has evolved, these people have come to realize that an 
integrated, multi-disciplinary approach is necessary for successful SHM. Significant 
future developments of this technology will, in all likelihood, come by way of research 
efforts encompassing fields such as structural dynamics, signal processing, motion and 
environmental sensing hardware, computational hardware, data telemetry, smart 
materials, and statistical pattern recognition coupled with machine learning, as well as 
other fields yet to be defined.  This paper concludes by describing an integrated approach 
to SHM encompassing many of these disciplines that is currently being undertaken at 
LANL. 
  
Early studies related to structural 
health monitoring: Vibration-based 
damage detection work at LANL had its 
beginnings almost 15 years ago when 
engineers attempted to identify the onset 
of seismically-induced buckling in scale-
model nuclear reactor containment 
structures from changes in their 
measured vibration response during 
shake-table testing. This work was 
followed by attempts to infer damage in 
seismically loaded scale-model 

reinforced concrete shear wall structures 
from changes in their shake-table 
induced vibration response (Figure 1).  
Also, modal testing of glove boxes, orig
verification, identified faulty anchorage in
these various experimental studies it becam
potential to provide a mechanism for globa
damage detection was not the primary focus
structural health monitoring were developed
 
 
In a parallel effort, physicists at LANL deve
detection system referred to as Resonant 
system combined sine-sweep vibration test
Figure 1 Scale model nuclear power
plant diesel generator building mounted
on a shake table.
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Figure 2 A technician introduces
damage into a girder of the I-40 Bridge. 

make very precise resonant frequency measurements on small test specimens. For  objects 
of very regular geometry, such as ball bearings, this test system was shown to provide 
very accurate indications of material or geometric anomalies, such as out-of-roundness of 
a ball bearing. Subsequent applications of RUS include the detection of salmonella 
poisoning in eggs from changes in their vibration characteristics, the screening of 
captured Gulf-War ammunition to determine if artillery shells contain conventional or 
chemical warheads, and detection of cracks in machined parts. 
 
 
The formal study of structural health 
monitoring began when these physicists 
and engineers were asked to jointly 
participate in the damage detection study 
on the I-40 Bridge over the Rio Grande 
(Figure 2) [2]. These tests were 
performed in conjunction with engineers 
from Sandia National Laboratory (SNL), 
faculty and students from New Mexico 
State University, and the New Mexico 
State Highway and Transportation 
Department. The engineers from LANL 
performed the experimental modal 
analyses of the bridge in its undamaged 
and damaged conditions while engineers 
from SNL ran a hydraulic shaker that 
provided the input for these vibration tests. 
The physicists contributed to these tests by demonstrating a non-contact vibration 
measurement system based on a microwave interferometer designed and constructed at 
LANL [3].  
 
 
Participation on the I-40 Bridge tests led to internally funded research projects focused 
directly on vibration-based damage detection. As part of these projects the LANL staff 
have begun to formalize the process of structural health monitoring.  The outcomes of 
these studies are summarized below. 
 

Outcome of early work: The investigators at LANL can point to three primary 
contributions to the structural health monitoring field that have resulted from the early I-
40 Bridge tests and the internally-funded investigations of vibration-base damage 
detection. First, a literature review of structural health monitoring studies was published, 
and in the authors’ opinion, this review is the most comprehensive summary of the 
literature in this field to date [4]. Second, the computer code DIAMOND was developed.  
This code assembles many recently developed methods for vibration-based damage 
detection based on linear modal properties into one graphical user interface code [5]. The 



 

Figure 3 Alamosa Canyon Bridge. 

final success of these projects was the development statistical analysis procedures that 
can be used to quantify the variability in the measured modal properties that form the 
basis for many of the current vibration-based damage detection methods.  Brief 
summaries of various projects that were conducted as part of these early formal 
investigations of structural health monitoring are provided below. 
 
 
Results of the I-40 Bridge project: To date, field verification of damage detection 
algorithms applied to large civil engineering structures is scarce as few full-size structures 
are made available for such destructive testing. Because the I-40 bridges over the Rio 
Grande in Albuquerque, New Mexico were to be demolished and replaced, the 
investigators were able to introduce simulated cracks into the structure, perform vibration 
test before and after each level of damage had been introduced, and then use the test data 
to validate various damage identification methods. Staff from LANL and SNL performed 
experimental modal analyses on the bridge in its undamaged and damaged conditions. 
Researchers from Texas A&M University subsequently applied a damage detection 
algorithm to these data [6]. The same damage detection algorithm was independently 
applied by the LANL staff to these data and to numerical data from finite element 
simulations of the I-40 bridge where other damage scenarios were investigated [7]. The 
data required by the damage identification algorithm are mode shapes and resonant 
frequencies for the damaged and undamaged bridge. Results from these investigations are 
some of the first comparative studies of various damage identification algorithms that 
have been reported in the technical literature [8].  The general conclusion form this study 
was that linear modal properties associated with the lower frequency global modes are 
somewhat insensitive to local damage and subject to significant variability as a result of 
changing operational and environmental conditions 
 
 
Results of the Alamosa 
Canyon Bridge Project: The 
Alamosa Canyon Bridge in 
southern New Mexico has 
been designated as a bridge 
test facility by the New 
Mexico State Highway and 
Transportation Department. 
Numerous modal tests were 
performed on this structure for 
the purposes of damage 

detection (Figure 3). With only 
limited abilities to introduce 
damage into this structure, tests focused on quantifying the statistical variations in modal 
properties that result from changing environmental conditions. [9, 10]  It is imperative 
that these changes be quantified and that changes resulting from damage are shown to be 
either greater than or different from those resulting from the test-to-test variations. 



 

Figure 4 A modal test being
performed on a bridge column at 
the University of California, 
Irvine. 

Statistical analysis techniques such as Monte Carlo simulation and Bootstrap analysis 
have played an important role in the quantification of such variability effects, as well as 
the incorporation of these effects into various damage identification algorithms [11].  
 
UC-Irvine bridge column tests: The University 
of California, Irvine (UCI) had a contract with 
CALTRANS to perform static, cyclic tests to 
failure on seismically retrofitted, reinforced-
concrete bridge columns.  This project is under 
the direction of Prof. Gerry Pardoen at UCI.  
With funds obtained through LANL’s University 
of California interaction office, LANL staff and a 
faculty member from the Mechanical Eng. Dept. 
at Rose-Hulman Institute of Technology were 
able to perform numerous experimental modal 
analyses on the columns (Figure 4). These modal 
tests were performed at stages during the static 
load cycle testing when various amounts of 
damage had been accumulated in the columns. 
With help from staff in LANL’s computer 
science division these tests and the associated 
data obtained were used to develop and 
demonstrate a statistical pattern recognition 
process of vibration-based damage detection.  
This study represented LANL’s first use of 
formal statistical pattern recognition algorithms 
in structural health monitoring studies [12]. 

 

A statistical pattern recognition paradigm for structural health monitoring: 
Through the previously summarized studies and interactions with staff in LANL’s 
computer science division, it has been recognized that the vibration-based damage 
detection problem is fundamentally one of statistical pattern recognition. A statistical 
pattern recognition paradigm for SHM can be described in terms of a four-step process 
that includes 1. Operational evaluation; 2. Data acquisition and cleansing; 3. Feature 
extraction and data compression; and 4. Statistical modeling for feature discrimination.  
It is the authors’ opinion that all structural health monitoring problems can be defined in 
terms of this statistical pattern recognition paradigm.  These four steps are described 
below. 
 

Operational evaluation: Operational evaluation attempts to answers four questions 
regarding the implementation of a structural health monitoring system:  
 



 

1. What is the life safety and/or economic justification for performing the health 
monitoring activity. 

2. How is damage defined for the system being investigated and, for multiple damage 
possibilities, which are of the most concern? 

3. What are the conditions, both operational and environmental, under which the system 
to be monitored functions?  

4. What are the limitations on acquiring data in the operational environment? 
 
Operational evaluation begins to set the limitations on what will be monitored and how 
the monitoring will be accomplished.  This evaluation starts to tailor the health 
monitoring process to features that are unique to the system being monitored and tries to 
take advantage of unique features of the postulated damage that is to be detected.  
 

Data acquisition and cleansing: The data acquisition portion of the structural health 
monitoring process involves selecting the types of sensors to be used, selecting the 
location where the sensors should be placed, determining the number of sensors to be 
used, and defining the data acquisition/storage/transmittal hardware. This process is 
application specific. Economic considerations play a major role in these decisions.  
Another consideration is how often the data should be collected.  In some cases it is 
adequate to collect data immediately before and at periodic intervals after a severe event.  
However, if fatigue crack growth is the failure mode of concern, it is necessary to collect 
data almost continuously at relatively short time intervals. 
 
 
Because data can be measured under varying conditions, the ability to normalize the data 
becomes very important to the damage detection process.  One of the most common 
procedures is to normalize the measured responses by the measured inputs.  When 
environmental or operating condition variability is an issue, the need can arise to 
normalize the data in some temporal fashion to facilitate the comparison of data 
measured at similar times of an environmental or operational cycle.  Sources of 
variability in the data acquisition process and with the system being monitored need to be 
identified and minimized to the extent possible.  In general, all sources of variability 
cannot be eliminated.  Therefore, it is necessary to make the appropriate measurements 
such that these sources can be statistically quantified.  
 
 
Data cleansing is the process of selectively choosing data to accept for, or reject from, the 
feature selection process.  The data cleansing process is usually based on knowledge 
gained by individuals directly involved with the data acquisition.  Finally, it is noted that 
the data acquisition and cleansing portion of a structural health-monitoring process 
should not be static.  Insight gained from the feature selection process and the statistical 
model development process provides information regarding changes that can improve the 
data acquisition process. 
 
 



 

Feature extraction and data cleansing: The data features used to distinguish the 
damaged structures from undamaged ones receive the most attention in the technical 
literature.  Inherent in the feature selection process is the condensation of the data. The 
diagnostic measurements made during a structural health monitoring activity typically 
produce a large amount of data.  Condensation of the data is advantageous and necessary, 
particularly if comparisons of many data sets over the lifetime of the structure are 
envisioned.  Also, because data may be acquired from a structure over an extended 
period of time and in various operational environments, robust data reduction techniques 
must result in the features sensitive to the structural changes of interest in the presence of 
environmental noise. 
 
  
The best features for damage detection are typically application specific. Numerous 
features are often identified for a structure and assembled into a feature vector.  In 
general, a low dimensional feature vector is desirable.  It is also desirable to obtain many 
samples of the feature vectors.  There are no restrictions on the types or combinations of 
data contained in the feature vector.  Typically, dynamic response parameters will be 
combined in a feature vector with data quantifying environmental and operational 
conditions. 
 
 
 A variety of methods are employed to identify features for damage detection. Past 
experience with measured data from a system, particularly if damaging events have been 
previously observed for that system, is often the basis for feature selection.  Numerical 
simulation of the damaged system’s response to simulated inputs is another means of 
identifying features.  The application of engineered flaws, similar to ones expected in 
actual operating conditions, to laboratory specimens can identify parameters that are 
sensitive to the expected damage. Damage accumulation testing, during which significant 
structural components of the system under study are subjected to a realistic accumulation 
of damage, can also be used to identify appropriate features.  Fitting linear or nonlinear, 
physical-based or non-physical-based models of the structural response to measured data 
can also help identify damage-sensitive features.  
 
 
A summary of common features used in vibration-based damage detection studies can be 
found in [4].  These features include, but are not limited to, those derived from basic 
modal properties (resonant frequencies and mode shapes), mode shape curvature 
changes, dynamically measured flexibility, changes in structural model parameters 
(elemental stiffness values) resulting from model updating procedures, non-model based 
time-history and spectral pattern methods, and methods based on nonlinear and/or non-
stationary response introduced by the onset of damage.  An example of qualitative 
features based on nonlinear and non-stationary response is shown in Figure 5 where the 
change in the time-frequency response of a cantilever beam can be seen after a crack has 
been introduced into the beam. 
 



 

 

         
 
Figure 5. Time-frequency spectra of the free-vibration acceleration-time histories 
measured on an uncracked cantilever beam (left) and a cracked cantilever beam (right). 
 

Statistical model development: The portion of the structural health monitoring process 
that has received the least attention in the technical literature is the development of 
statistical models to enhance the damage detection process.  Almost none of the hundreds 
of studies summarized in [4] make use of any statistical methods to assess if the changes 
in the selected features used to identify damaged systems are statistically significant.  
 
 
Statistical model development is concerned with the implementation of the algorithms 
that operate on the extracted features to quantify the damage state of the structure. The 
algorithms used in statistical model development usually fall into three categories.  When 
data are available from both the undamaged and damaged structure, the statistical pattern 
recognition algorithms fall into the general classification referred to as supervised 
learning.  Group classification and regression analysis are supervised learning 
algorithms.  Unsupervised learning refers to algorithms that are applied to data not 
containing examples from the damaged structure.  Density estimation and outlier 
detection are the primary statistical tools employed in an unsupervised learning mode 
[13]. 
 
 
The damage state of a system can be described in term of five different levels along the 
lines of those discussed in [14] to answers the following questions: 1. Is there damage in 
the system (existence)?; 2. Where is the damage in the system (location)?; 3. What kind 
of damage is present (type)?; 4. How severe is the damage (extent)?; and 5. How much 
useful life remains (prediction)?  Answering these questions in the order presented 
represents increasing knowledge of the damage state.  The statistical models are used to 
answer these questions in an unambiguous and quantifiable manner.  Experimental 
structural dynamics techniques can be used to address the first two questions in an 
unsupervised learning mode. To identify the type of damage, data from structures with 



 

the specific types of damage must be available for correlation with the measured features. 
Analytical models are usually needed to answer the fourth and fifth questions unless 
examples of data are available from the system (or a similar system) when it exhibits 
varying damage levels.  
 
 
Finally, an important part of the statistical model development process is the testing of 
these models on actual data to establish the sensitivity of the selected features to damage 
and to study the possibility of false indications of damage.  False indications of damage 
fall into two categories: 1.) False-positive damage indication (indication of damage when 
none is present), and 2). False-negative damage indication (no indication of damage 
when damage is present).  Although the second category is detrimental to the damage 
detection process and can have serious implications, false-positive readings also erode 
confidence in the damage detection process. 
 

Fundamental challenges for structural health monitoring: The basic premise of SHM 
procedures that utilize vibration-based damage detection is that damage will significantly 
alter the stiffness, mass or energy dissipation properties of a system, which, in turn, alter 
the measured dynamic response of that system.  Although the basis for vibration-based 
damage detection appears intuitive, its actual application poses many significant 
technical challenges.  The most fundamental challenge is the fact that damage is typically 
a local phenomenon and may not significantly influence the lower-frequency global 
response of structures that is normally measured during vibration tests.  Stated another 
way, this fundamental challenge is similar to that in many engineering fields where the 
ability to capture the system response on widely varying length scales, as is needed to 
model turbulence or to develop phenomenological models of damping, has proven 
difficult.  Another fundamental challenge is that in many situations vibration-based 
damage detection must be performed in an unsupervised learning mode. Finally, data 
normalization poses as significant challenge for this technology if environmental and 
operational variability are to accounted for in the damage diagnosis process. These 
challenges are supplemented by many practical issues associated with making accurate 
and repeatable vibration measurements at a limited number of locations on complex 
structures often operating in adverse environments. 
 
 
The future: integrated structural health monitoring:  The goal of current research 
efforts at LANL is to develop a robust and cost-effective SHM system by integrating and 
extending technologies from various engineering and information technology disciplines. 
The system will be composed of both hardware and software components.  Changes in 
dynamic response resulting from damage will be detected with sensitive, dynamic 
response measurements made with active Micro-Electro Mechanical Systems (MEMS) 
and fiber optic sensing technology.  Here the term active indicates that the sensing units 
will be designed to provide a local mechanical excitation source tailored to the 
monitoring activity. Software for data interrogation will incorporate statistical pattern 



 

recognition algorithms to identify that damage is present.  Damage will be located by 
examining the transmissibility between a local array of sensors using cross-correlation 
techniques. The software will be integrated into the sensing unit through a programmable 
micro-processing chip. The processed data output of these sensing units will be 
monitored at a central location using a wireless data transmission system.  This integrated 
system, depicted in Figure 6, is being developed with the intent that it can be adapted to 
monitor a variety of engineering systems.  These systems include aircraft, space vehicles, 
rotating machinery in semi-conductor manufacturing facilities, and buildings and bridges 
in high seismic regions. This strategy for SHM offers a potential for a significant 
breakthrough in this technology through an integrated sensing/data interrogation process 
that, to the author’s knowledge, has not been attempted to date. 
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Figure 6. The current LANL research objective: Move from a conventional wired, off-
the-shelf sensing system to an active wireless system developed for a specific health 
monitoring activity. 
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